
Arduino Nano Code for HVAC Protection Circuit
Version 0.1, December 2025

File: ArduinoHVACController.ino, inside subdirectory ArduinoHVACController
(Per Arduino integrated development environment requirements)

//////////////////LIBRARIES TO INCLUDE/////////////////////////////////
// include the library for the Liquid Crystal display
#include <LiquidCrystal.h> // standard lib for liquid crystal
#include <Arduino.h> // basic Arduino functions
#include <avr/wdt.h> // Allows us to have a watchdog timer

/////////////ARDUINO OUTPUTS//actual board//////////////////////////
#define HVACPOWERED 6 // D6 shows when circuit is up and allows power to HVAC
 // send HIGH to LED & resistor;
#define DELAYOUTPUT 7 // D7 shows during the time that delay is active
 // sends HIGH to LED and resistor;
#define NANOLED 13// D13 is onboard LED
#define ACPWRINPUT A0 // A0 allows reading isolated AC power input
#define DELAYCONTROL A1 // A1 allows reading delay request during SETUP
#define RELAYOUTPUT 5 // Goes to Solid State Relay to control AC
#define DELAYTIME 100 // use 1500 for 3 minutes
#define ERRORBOUND 20 // error bound on change in 4 measurements

////////////////////////STATES//////////////////////////////////

#define ACGONE 0
#define ACGOOD 1

/*******************************LOGIC
**

SETUP
Setup turns off the transmitter power by setting ALC to approx -4 VDC
Setup turns off the ON light
Setup turns off the DELAY light

**********/

///////////////////////////STRUCTURES & VARIABLES ///////////////////////////////////////
unsigned long current_milliseconds; // the current number of milliseconds since SEND output
int delay_count; // the desired delay in terms of count
 // approx 500 counts / minute
int lockoutcounter=DELAYTIME; // downcounter checking power good
int refvoltagereading[200]; // reference voltages
int normalpeakreading;
int normalaveragereading;
int failuremode; // track how it glitched
 // 1 = low average 1/4 cycle
 // 2 = low average, 1/2 cycle
 // 3 = high average, 1/2 cycle
 // 4= low peak voltage, 1/2 cycle
 // 5 = high peak voltage, 1/2 cycle
 // "cycle" = 16msec, full 60 hz cycle. We are using fullwave rectified
 // so we get 120Hz ripple --> we check 8 msec equivalent to half cycle
 // of original AC

LiquidCrystal lcd(8, 9, 10, 11, 12, 13); // The GLG board -- sequencer, rotator controller, arduino
winkeyer etc

/////////////////// SET UP ROUTINE (EXECUTED ONCE ON STARTUP //
void setup() {
 int i; // general purpose counter
 int j; // another

 pinMode(RELAYOUTPUT, INPUT); // Don't allow this any ability to write until needed!
 pinMode(ACPWRINPUT, INPUT);
 pinMode(HVACPOWERED, OUTPUT);
 pinMode(DELAYOUTPUT, OUTPUT);
 pinMode(NANOLED, OUTPUT); // onboard LED

 analogReference(DEFAULT); // sets 5V as the top of reference

 //digitalWrite(RELAYOUTPUT, LOW); // turn OFF the relay output to de-energize the relay
 digitalWrite(HVACPOWERED,LOW); // turn off that LED
 digitalWrite(DELAYOUTPUT,HIGH); // turn ON the delay LED
 digitalWrite(NANOLED,HIGH); // turn ON the Nano LED

 cli();
 wdt_reset();
 /*
 WDTCSR configuration:
 WDIE = 1: Interrupt Enable
 WDE = 1 :Reset Enable
 See table for time-out variations:
 WDP3 = 0 :For 1000ms Time-out
 WDP2 = 1 :For 1000ms Time-out
 WDP1 = 1 :For 1000ms Time-out

 WDP0 = 0 :For 1000ms Time-out
 */
 // Enter Watchdog Configuration mode:
 WDTCSR |= (1 << WDCE) | (1 << WDE);
 // Set Watchdog settings:
 WDTCSR = (1 << WDIE) | (1 << WDE) | (0 << WDP3) | (1 << WDP2) | (1 << WDP1) | (1 <<
WDP0);
 // trying to set it for 2 seconds
 sei(); // R-enable the interrups

 //Serial.begin(115200); // this sets up the USB to give us diagnostic info
 // at baud rate 115200 (fast)

 lcd.begin(16, 2); // initialize the lcd display

 lcd.setCursor(0,1); // set cursor to 0th column, 1st row (2nd line on ours)
 Lcd_Clear_Line();
 lcd.setCursor(0,1);

 lcd.setCursor(0,0); // set the cursor at 0th column, 0th row
 Lcd_Clear_Line();
 lcd.setCursor(0,0);
 lcd.print(F("HVAC Protection"));
 MyDelay(2000);
 lcd.setCursor(0,0); // set the cursor at 0th column, 0th row
 Lcd_Clear_Line();
 lcd.setCursor(0,0);
 lcd.print(F("KX4Z Sequencer"));
 MyDelay(2000); // Delay so this can be READ
 wdt_reset();
 lcd.setCursor(0,0); // set the cursor at 0th column, 0th row
 Lcd_Clear_Line();
 lcd.setCursor(0,0);
 lcd.print(F("Version 0.1"));
 MyDelay(2000); // Delay so this can be READ
 wdt_reset();
 lcd.setCursor(0,0); // set the cursor at 0th column, 0th row
 Lcd_Clear_Line();
 lcd.setCursor(0,0);
 lcd.print(F("Setup ACdetect"));
 MyDelay(100); // Delay so this can be READ

// Approximately 80 measurements is one period (for 120Hz ripple)
for(i=0;i<200;i++){
 refvoltagereading[i] = analogRead(ACPWRINPUT);
}

wdt_reset();

for(i=0; i<10; i++) {
 normalpeakreading = 0;
 normalaveragereading = 0;

 for(j=i*8; j<(i*8)+75; j++){
 if(refvoltagereading[j] > normalpeakreading) normalpeakreading= refvoltagereading[j];
 normalaveragereading = normalaveragereading + refvoltagereading[j];
 }
 normalaveragereading = normalaveragereading/75;
 wdt_reset();
 lcd.setCursor(0,0);
 Lcd_Clear_Line();
 lcd.setCursor(0,0);
 lcd.print(F("Avg:"));
 lcd.setCursor(5,0);
 lcd.print(i);
 lcd.setCursor(10,0);
 lcd.print(normalaveragereading);
 lcd.setCursor(0,1);
 Lcd_Clear_Line();
 lcd.setCursor(0,1);
 lcd.print(F("Pk:"));
 lcd.setCursor(6,1);
 lcd.print(normalpeakreading);
 wdt_reset();
 MyDelay(1000);
 wdt_reset();
}

/*
for(i=0; i<200;i++){
 lcd.setCursor(0,0); // set the cursor at 0th column, 0th row
 Lcd_Clear_Line();
 lcd.setCursor(0,0);
 lcd.print(F("V:"));
 lcd.setCursor(4,0);
 lcd.print(i);
 lcd.setCursor(9,0);
 lcd.print(refvoltagereading[i]);
 wdt_reset();
 MyDelay(100);
 wdt_reset();
}
*/

 // Need to turn off all the current systems and measure the offset voltages...
 //Serial.print("PowerLevel: ");
 //Serial.println(analogRead(A0));
 /*
 lcd.setCursor(0,1);
 Lcd_Clear_Line();
 lcd.setCursor(0,1);
 sprintf(buffer,"Send: ");
 lcd.print(buffer);
 lcd.print(analogRead(A0));
 */

 wdt_reset();
 // Read the analog delay control to set up the lockoutcounter
 // 1 min approx equal 500 counts

 delay_count = 100 + analogRead(DELAYCONTROL) * 4;
 lockoutcounter = delay_count;

 digitalWrite(NANOLED, LOW); // turn OFF LED until
 while(lockoutcounter>0) {
 //MyDelay(100); // wait 100 msec
 wdt_reset();

 if(PowerCheck()==1){
 lockoutcounter--;
 digitalWrite(NANOLED, HIGH); // we found power
 lcd.setCursor(0,0); // set the cursor at 0th column, 0th row
 Lcd_Clear_Line();
 lcd.setCursor(0,0);
 lcd.print(F("SETUP:AC!"));
 lcd.setCursor(11,0);
 lcd.print(delay_count);
 lcd.setCursor(0,1); // set the cursor at 0th column, 0th row
 Lcd_Clear_Line();
 lcd.setCursor(0,1);
 lcd.print(lockoutcounter);
 lcd.setCursor(8,1);
 lcd.print(F("HVAC OFF"));
 wdt_reset();
 }
 else {
 lockoutcounter=delay_count;
 digitalWrite(NANOLED,LOW); // no power
 lcd.setCursor(0,0); // set the cursor at 0th column, 0th row
 Lcd_Clear_Line();
 lcd.setCursor(0,0);
 lcd.print(F("No AC"));

 lcd.setCursor(11,0);
 lcd.print(delay_count);
 lcd.setCursor(0,1); // set the cursor at 0th column, 0th row
 Lcd_Clear_Line();
 lcd.setCursor(0,1);
 lcd.print(lockoutcounter);
 wdt_reset();
 }
 } // end of lockout counter loop

 // If we got here, we had 1 minutes of constant good power!
 lcd.setCursor(0,0); // set the cursor at 0th column, 0th row
 Lcd_Clear_Line();
 lcd.setCursor(0,0);
 lcd.print(F("SetupGood"));
 wdt_reset();
 MyDelay(500); // Delay so this can be READ
 wdt_reset();
 pinMode(RELAYOUTPUT, OUTPUT); // Now we need to use it!
 digitalWrite(RELAYOUTPUT, HIGH); // turn ON power to the HVAC
 digitalWrite(HVACPOWERED,HIGH); // turn off that LED
 digitalWrite(DELAYOUTPUT,LOW); // turn OFF the delay LED
 digitalWrite(NANOLED, HIGH); // indicate good setup
 lcd.setCursor(0,0); // set the cursor at 0th column, 0th row
 Lcd_Clear_Line();
 lcd.setCursor(0,0);

} //end of SETUP

////////////////////////////READ POwer LEVEL////////////////////////////////
int PowerCheck() {
int i, n, powertop, powerbottom, powerreading;
powertop = 0; // initialize as not present
powerbottom= 0; // initialize as not present
int reading[80]; // readings of voltage in 0-1023

int average=0;
int peak=0;

for(i=0;i<75;i++){
 reading[i] = analogRead(ACPWRINPUT);
 if (reading[i] > peak) peak = reading[i];
 average = average + reading[i];
 if(i==30) {
 if(average<1500) { // really LOW LOW VOLTAGE!!
 failuremode = 1; // low average 1/4 cycle through
 return(0);
 }

 } // end of check for low voltage halfway through half cycle
 } // end of 75 reading loop
average = average/75;
wdt_reset();
// C R I T E R I A ///////////////////////////////////
// Set 6% limits on peak voltage = 24 up, 24 down
// Set 6% limits on average voltage = 14 up, 14 down
// note earlier check on absence of voltage for significant portion....

if (average < 236) {
 failuremode= 2;
 return (0); // Originally 240
}
if (average > 270){
 failuremode= 3;
 return (0); // Originally 265
}
if (peak<376){
 failuremode =4;
 return(0); // originally 390 (very tight!)
}
if (peak>434){
 failuremode=5;
 return(0); // originally 410 (very tight!)
}
// if it didn't fail, then it passed!!
return(1);

} // end of PowerCheck routine

//////////////////////////////READ DELAY SETTING///////////////////////////////////
void readdelaysetting() {
// read the 0-5V setting of the delay setting potentiometer
//int delayinputsetting;

//delayinputsetting = analogRead(DELAYINPUT); // reads 0-1023 for 0-250 mSec delay
//delay_milliseconds = delayinputsetting/4 ; // int from 0 to about 250
return;
}

///////////////////////////LOOP ROUTINE ///
// Meat of the program: executed over and over again
void loop() {
 char buffer[20];
 // put your main code here, to run repeatedly:
 // Turn on Power to HVAC

 pinMode(RELAYOUTPUT, OUTPUT);
 digitalWrite(RELAYOUTPUT, HIGH); // turn ON Solid State Relay
 digitalWrite(HVACPOWERED,HIGH); // turn off that LED
 digitalWrite(DELAYOUTPUT,LOW); // turn OFF the delay LED
 digitalWrite(NANOLED, HIGH); // turn ON the Nano LED
 lcd.setCursor(0,0); // set the cursor at 0th column, 0th row
 //Lcd_Clear_Line();
 // lcd.setCursor(0,0);
 lcd.print(F("PowerGood "));
 wdt_reset();
 lcd.setCursor(8,1); // set the cursor at 0th column, 0th row
 lcd.print(F("HVAC ON "));
 wdt_reset();

 wdt_reset(); // Reset the watchdog timer -- it it doesn't get reset within 2 seconds,
 // it will restart the software
 if(PowerCheck()==1) {
 //lcd.setCursor(0,0); // set the cursor at 0th column, 0th row
 //Lcd_Clear_Line();
 //lcd.setCursor(0,0);
 //lcd.print(F("PowerGood"));
 wdt_reset();
 }

 else {
 // Detected a power failure!
 // Quickly turn everything off and start counting down good power
 // Circuit likely to die and go through startup again...
 digitalWrite(RELAYOUTPUT,LOW); // turn OFF the relay output to de-energize the relay
 MyDelay(2); // time to turn it off
 pinMode(RELAYOUTPUT, INPUT); // now make it impossible to turn back on!
 // Hoping this will stop microprocessor dying mistakes....
 digitalWrite(HVACPOWERED,LOW); // turn off that LED
 digitalWrite(DELAYOUTPUT,HIGH); // turn ON the delay LED
 digitalWrite(NANOLED, LOW) ; // indicate power loss detected
 lcd.setCursor(0,0); // set the cursor at 0th column, 0th row
 Lcd_Clear_Line();
 lcd.setCursor(0,0);
 lcd.print(F("PwrGlitch"));
 lcd.setCursor (11,0);
 lcd.print(failuremode); // print the first failure detected
 lcd.setCursor(0,1);
 Lcd_Clear_Line();
 lcd.setCursor(8,1);
 lcd.print(F("HVAC OFF"));
 wdt_reset();

 lockoutcounter = delay_count; // reset the lockout counter
 while(lockoutcounter>0) {
 // MyDelay(100); // wait 100 msec
 wdt_reset();

 if(PowerCheck()==1){
 lockoutcounter--;
 digitalWrite(NANOLED, HIGH); // we found power
 // lcd.setCursor(0,0); // set the cursor at 0th column, 0th row
 // Lcd_Clear_Line();
 // lcd.setCursor(0,0);
 // lcd.print(F("AC Found"));
 lcd.setCursor(0,1); // set the cursor at 0th column, 1th row
 // Lcd_Clear_Line();
 lcd.setCursor(0,1);
 lcd.print(lockoutcounter);
 wdt_reset();
 }
 else {
 lockoutcounter=delay_count;
 digitalWrite(NANOLED,LOW); // no power
 lcd.setCursor(0,0); // set the cursor at 0th column, 0th row
 Lcd_Clear_Line();
 lcd.setCursor(0,0);
 lcd.print(F("PwrGlitch"));
 lcd.setCursor(11,0);
 lcd.print(failuremode); // show how it failed
 lcd.setCursor(0,1); // set the cursor at 0th column, 0th row
 Lcd_Clear_Line();
 lcd.setCursor(0,1);
 lcd.print(lockoutcounter);

 lcd.setCursor(8,1);
 lcd.print(F("HVAC OFF"));
 wdt_reset();

 } // end of ELSE

 } // END OF while

 } // eLSE
 // If we get here, power was good and OK to turn it back on,
 // Which will occur on the next LOOP

} // END OF LOOP

//////////////////////////supporting subroutines //////////////////////////////////////

//

///////////////////////////CLEAR LINE//
void Lcd_Clear_Line()
{
 lcd.print(F(" ")); // should be exactly 16 spaces
}
//////////////////////////PRINT TO THE SCREEN ///////////////////////////////////////
void lcd_display(char *s1,char *s2, int dtime)
{
 // dtime= milliseconds to delay
 lcd.setCursor(0,0); // set the cursor at 0th column, 0th row
 // make sure the strings are null terminated after the 16th character. 1st char = *s1
 *(s1+15) = 0;
 *(s2+15) = 0;
 lcd.print(s1);
 lcd.setCursor(0,1); // set cursor to 0th column, 1st row (2nd line on ours)
 lcd.print(s2);
 // call the delay function, while handling the watchdog
 wdt_reset(); // Reset the watchdog timer -- it it doesn't get reset within 2 seconds,
 // it will restart the software
 MyDelay(dtime);
 wdt_reset(); // Reset the watchdog timer -- it it doesn't get reset within 2 seconds,
 // it will restart the software
}
//////////////////////MICROSECOND DELAY NON BLOCKING /////////////////////////////////
void MyMicroSecondsDelay(int udelay)
{
 int microseconds;
 unsigned long current_microseconds, next_microseconds;

 current_microseconds = micros();
 next_microseconds = current_microseconds + (unsigned long) udelay;
 while(micros()<next_microseconds);
 return;

}

/////////////////////////////MILLISECOND DELAY NON BLOCKING///////////////////
void MyDelay(int msec)
{

 unsigned long local_current_milliseconds, next_milliseconds, intermediate_milliseconds;
 int x;
 int thousands;
 wdt_reset();

 local_current_milliseconds = millis();
 next_milliseconds = local_current_milliseconds + (unsigned long) msec;
 thousands = msec/1000; // integer division
 if(thousands>=1) {
 for(x=1;x<= thousands; x++){
 intermediate_milliseconds = local_current_milliseconds + (unsigned long) (x*1000);
 while (millis() < intermediate_milliseconds);
 wdt_reset();
 }
 }
 // now finish out the remainder, which should be less than 1000 milliseconds
 while (millis()<next_milliseconds);
 wdt_reset();
 return;
}

