Arduino Nano Code for HVAC Protection Circuit
Version 0.1, December 2025

File: ArduinoHVACController.ino, inside subdirectory ArduinoHVACController
(Per Arduino integrated development environment requirements)

1177777777777//LIBRARIES TO INCLUDE//////11177171777171111111111111
// include the library for the Liquid Crystal display

#include <LiquidCrystal.h> // standard lib for liquid crystal
#include <Arduino.h> // basic Arduino functions

#include <avr/wdt.h> // Allows us to have a watchdog timer

1111777777/TARDUINO OUTPUTS//actual board/////////////111111111111]
#define HVACPOWERED 6 // D6 shows when circuit is up and allows power to HVAC
// send HIGH to LED & resistor;
#define DELAYOUTPUT 7// D7 shows during the time that delay is active
// sends HIGH to LED and resistor;
#define NANOLED 13// D13 is onboard LED
#define ACPWRINPUT A0 // AO allows reading isolated AC power input
#define DELAYCONTROL Al // Al allows reading delay request during SETUP
#define RELAYOUTPUT 5// Goes to Solid State Relay to control AC
#define DELAYTIME 100 // use 1500 for 3 minutes
#define ERRORBOUND 20 // error bound on change in 4 measurements

T STATES /T T

#define ACGONE 0
#define ACGOOD 1

/*******************************LCK}H:
>k 3k sk sk sk s sk s sk sk sk sk sk sk st s sk sk sk sk sk st s sk sk sk sk sk s sk sk sk sk sk s sk sk skosk sk skoskeosk ko sk sk

SETUP

Setup turns off the transmitter power by setting ALC to approx -4 VDC
Setup turns off the ON light

Setup turns off the DELAY light

>k 3k s sk sk s sk sk sk sk sk sk sk sk s sk s sk sk sk sk s sk s sk sk sk sk sk s sk sk sk sk s sk s sk sk sk sk sk s ke sk sk sk sk s sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk s sk sk skeosk sk skokoskok
**********/

1HTTTTISTRUCTURES & VARIABLES ///7/771710010101717171711HHHHT7111717777T

unsigned long current milliseconds; // the current number of milliseconds since SEND output
int delay count; // the desired delay in terms of count
// approx 500 counts / minute
int lockoutcounter=DELAYTIME; // downcounter checking power good
int refvoltagereading[200]; // reference voltages
int normalpeakreading;
int normalaveragereading;
int failuremode; // track how it glitched

//'1 =1ow average 1/4 cycle

// 2 =low average, 1/2 cycle

/I 3 = high average, 1/2 cycle

// 4= low peak voltage, 1/2 cycle

/I'5 = high peak voltage, 1/2 cycle

// "cycle" = 16msec, full 60 hz cycle. We are using fullwave rectified
/I 'so we get 120Hz ripple --> we check 8 msec equivalent to half cycle
// of original AC

LiquidCrystal led(8, 9, 10, 11, 12, 13); // The GLG board -- sequencer, rotator controller, arduino
winkeyer etc

nnnnnnl SET UP ROUTINE (EXECUTED ONCE ON STARTUP /7711107111111
void setup() {

int1; // general purpose counter

int j; // another

pinMode(RELAYOUTPUT, INPUT); // Don't allow this any ability to write until needed!
pinMode(ACPWRINPUT, INPUT);

pinMode(HVACPOWERED, OUTPUT);

pinMode(DELAYOUTPUT, OUTPUT);

pinMode(NANOLED, OUTPUT); // onboard LED

analogReference(DEFAULT); // sets 5V as the top of reference

//digitalWrite(RELAYOUTPUT, LOW); // turn OFF the relay output to de-energize the relay
digital Write(HVACPOWERED,LOW); // turn off that LED
digitalWrite(DELAYOUTPUT,HIGH); // turn ON the delay LED
digitalWrite(NANOLED,HIGH); // turn ON the Nano LED

cli();

wdt_reset();

/*
WDTCSR configuration:
WDIE = 1: Interrupt Enable
WDE =1 :Reset Enable
See table for time-out variations:
WDP3 =0 :For 1000ms Time-out
WDP2 =1 :For 1000ms Time-out
WDP1 =1 :For 1000ms Time-out

WDPO = 0 :For 1000ms Time-out

*/

// Enter Watchdog Configuration mode:

WDTCSR |= (1 << WDCE) | (1 << WDE);

// Set Watchdog settings:

WDTCSR = (1 << WDIE) | (1 << WDE) | (0 << WDP3) | (1 << WDP2) | (1 << WDP1) | (1 <<
WDPO0);

// trying to set it for 2 seconds

sei(); // R-enable the interrups

//Serial.begin(115200); // this sets up the USB to give us diagnostic info
// at baud rate 115200 (fast)

led.begin(16, 2); // initialize the lcd display

led.setCursor(0,1); // set cursor to Oth column, 1st row (2nd line on ours)
Lcd Clear Line();
led.setCursor(0,1);

led.setCursor(0,0); // set the cursor at Oth column, Oth row
Lcd Clear Line();
led.setCursor(0,0);
led.print(F("HVAC Protection"));
MyDelay(2000);
Icd.setCursor(0,0); // set the cursor at Oth column, Oth row
Lcd Clear Line();
Icd.setCursor(0,0);
led.print(F("KX4Z Sequencer"));
MyDelay(2000); // Delay so this can be READ
wdt reset();
Icd.setCursor(0,0); // set the cursor at Oth column, Oth row
Lcd Clear Line();
Icd.setCursor(0,0);
led.print(F("Version 0.1"));
MyDelay(2000); // Delay so this can be READ
wdt reset();
Icd.setCursor(0,0); // set the cursor at Oth column, Oth row
Lcd Clear Line();
Icd.setCursor(0,0);
led.print(F("Setup ACdetect"));
MyDelay(100); // Delay so this can be READ

// Approximately 80 measurements is one period (for 120Hz ripple)
for(i=0;1<200;1++){

refvoltagereading[i] = analogRead(ACPWRINPUT);
h

wdt_reset();

for(i=0; 1<10; 1++) {
normalpeakreading = 0;
normalaveragereading = 0;

for(j=1*8; j<(i*8)+75; j++){
if(refvoltagereading[j] > normalpeakreading) normalpeakreading= refvoltagereading[j];
normalaveragereading = normalaveragereading + refvoltagereading[j];
}
normalaveragereading = normalaveragereading/75;
wdt_reset();
led.setCursor(0,0);
Lcd Clear Line();
led.setCursor(0,0);
led.print(F("Avg:"));
led.setCursor(5,0);
led.print(i);
led.setCursor(10,0);
lcd.print(normalaveragereading);
led.setCursor(0,1);
Lcd Clear Line();
led.setCursor(0,1);
led.print(F("Pk:"));
led.setCursor(6,1);
lcd.print(normalpeakreading);
wdt reset();
MyDelay(1000);
wdt reset();

/*

for(i=0; 1<200;i++){
lcd.setCursor(0,0); // set the cursor at Oth column, Oth row
Lcd Clear Line();
led.setCursor(0,0);
led.print(F("V:"));
led.setCursor(4,0);
led.print(i);
led.setCursor(9,0);
lcd.print(refvoltagereading[i]);
wdt reset();
MyDelay(100);
wdt reset();

*/

// ' Need to turn off all the current systems and measure the offset voltages...
//Serial.print("PowerLevel: ");
//Serial.println(analogRead(A0));
/*

led.setCursor(0,1);

Lcd Clear Line();
led.setCursor(0,1);
sprintf(buffer,"Send: ");
led.print(bufter);
lcd.print(analogRead(A0));

*/

wdt reset();
// Read the analog delay control to set up the lockoutcounter
//'1 min approx equal 500 counts

delay count = 100 + analogRead(DELAYCONTROL) * 4;
lockoutcounter = delay count;

digitalWrite(NANOLED, LOW); // turn OFF LED until
while(lockoutcounter>0) {

//MyDelay(100); // wait 100 msec

wdt reset();

if(PowerCheck()==1){
lockoutcounter--;
digitalWrite(NANOLED, HIGH); // we found power
Icd.setCursor(0,0); // set the cursor at Oth column, Oth row
Lcd Clear Line();
Icd.setCursor(0,0);
led.print(F("SETUP:AC!"));
Icd.setCursor(11,0);
led.print(delay count);
Icd.setCursor(0,1); // set the cursor at Oth column, Oth row
Lcd Clear Line();
Icd.setCursor(0,1);
led.print(lockoutcounter);
Icd.setCursor(8,1);
led.print(F("HVAC OFF"));
wdt_reset();
}
else {
lockoutcounter=delay count;
digital Write(NANOLED,LOW); // no power
led.setCursor(0,0); // set the cursor at Oth column, Oth row
Lcd Clear Line();
led.setCursor(0,0);
led.print(F("No AC"));

led.setCursor(11,0);

led.print(delay count);

led.setCursor(0,1); // set the cursor at Oth column, Oth row
Lcd Clear Line();

led.setCursor(0,1);

led.print(lockoutcounter);

wdt_reset();

}

}+ // end of lockout counter loop

// If we got here, we had 1 minutes of constant good power!
led.setCursor(0,0); // set the cursor at Oth column, Oth row

Lcd Clear Line();

led.setCursor(0,0);

led.print(F("SetupGood"));

wdt reset();

MyDelay(500); // Delay so this can be READ

wdt reset();

pinMode(RELAYOUTPUT, OUTPUT); // Now we need to use it!
digitalWrite(RELAYOUTPUT, HIGH); // turn ON power to the HVAC
digital Write(HVACPOWERED,HIGH); // turn off that LED
digitalWrite(DELAYOUTPUT,LOW); // turn OFF the delay LED
digitalWrite(NANOLED, HIGH); // indicate good setup
led.setCursor(0,0); // set the cursor at Oth column, Oth row

Lcd Clear Line();

led.setCursor(0,0);

} //end of SETUP

i IREAD POwer LEVEL/////11111111111H1111T11T1T1TTTTT
int PowerCheck() {

int 1, n, powertop, powerbottom, powerreading;

powertop = 0; // initialize as not present

powerbottom= 0; // initialize as not present

int reading[80]; // readings of voltage in 0-1023

int average=0;
int peak=0;

for(i=0;1<75;1++){

reading[i] = analogRead(ACPWRINPUT);

if (reading[i] > peak) peak = reading[i];

average = average + reading[i];

if(i==30) {

if(average<1500) { //really LOW LOW VOLTAGE!!

failuremode = 1; // low average 1/4 cycle through
return(0);

}

} // end of check for low voltage halfway through half cycle

} // end of 75 reading loop
average = average/75;
wdt reset();
[CRITERTA /1111110101010
/I Set 6% limits on peak voltage = 24 up, 24 down
/I Set 6% limits on average voltage = 14 up, 14 down
/I note earlier check on absence of voltage for significant portion....

if (average < 236) {
failuremode= 2;
return (0); // Originally 240
}
if (average > 270){
failuremode= 3;
return (0); // Originally 265
}
if (peak<376){
failuremode =4;
return(0); // originally 390 (very tight!)
}
if (peak>434){
failuremode=5;
return(0); // originally 410 (very tight!)
}
/1 if it didn't fail, then it passed!!
return(1);

} // end of PowerCheck routine

1HH1111TIREAD DELAY SETTING//1111111711711111111
void readdelaysetting() {

// read the 0-5V setting of the delay setting potentiometer

//int delayinputsetting;

//delayinputsetting = analogRead(DELAYINPUT); // reads 0-1023 for 0-250 mSec delay
//delay milliseconds = delayinputsetting/4 ; // int from 0 to about 250
return;

}

1 LOOP ROUTINE /770701101111
// Meat of the program: executed over and over again
void loop() {

char buffer[20];

// put your main code here, to run repeatedly:

// Turn on Power to HVAC

pinMode(RELAYOUTPUT, OUTPUT);
digitalWrite(RELAYOUTPUT, HIGH); // turn ON Solid State Relay
digital Write(HVACPOWERED,HIGH); // turn off that LED
digitalWrite(DELAYOUTPUT,LOW); // turn OFF the delay LED
digitalWrite(NANOLED, HIGH); // turn ON the Nano LED
led.setCursor(0,0); // set the cursor at Oth column, Oth row
//Led_Clear Line();

/I led.setCursor(0,0);

led.print(F("PowerGood "));

wdt reset();

Icd.setCursor(8,1); // set the cursor at Oth column, Oth row
led.print(F("HVAC ON "));

wdt_reset();

wdt reset(); // Reset the watchdog timer -- it it doesn't get reset within 2 seconds,
// it will restart the software
if(PowerCheck()==1) {
/Nlcd.setCursor(0,0); // set the cursor at Oth column, Oth row
//Led_Clear Line();
//lcd.setCursor(0,0);
/Nled.print(F("PowerGood"));
wdt reset();

}

else {
// Detected a power failure!
// Quickly turn everything off and start counting down good power
// Circuit likely to die and go through startup again...
digital Write(RELAYOUTPUT,LOW); // turn OFF the relay output to de-energize the relay
MyDelay(2); //time to turn it off
pinMode(RELAYOUTPUT, INPUT); // now make it impossible to turn back on!
// Hoping this will stop microprocessor dying mistakes....
digital Write(HVACPOWERED,LOW); // turn off that LED
digital Write(DELAYOUTPUT,HIGH); // turn ON the delay LED
digitalWrite(NANOLED, LOW) ; // indicate power loss detected
led.setCursor(0,0); // set the cursor at Oth column, Oth row
Lcd Clear Line();
led.setCursor(0,0);
led.print(F("PwrGlitch"));
led.setCursor (11,0);
lcd.print(failuremode); // print the first failure detected
led.setCursor(0,1);
Lcd Clear Line();
led.setCursor(8,1);
led.print(F("HVAC OFF"));
wdt reset();

lockoutcounter = delay count; // reset the lockout counter
while(lockoutcounter>0) {
// - MyDelay(100); // wait 100 msec
wdt reset();

if(PowerCheck()==1){
lockoutcounter--;
digitalWrite(NANOLED, HIGH); // we found power
// led.setCursor(0,0); // set the cursor at Oth column, Oth row
// Led Clear Line();
// Icd.setCursor(0,0);
// led.print(F("AC Found"));
lcd.setCursor(0,1); // set the cursor at Oth column, 1th row
// Led Clear Line();
lcd.setCursor(0,1);
led.print(lockoutcounter);
wdt_reset();
h
else {
lockoutcounter=delay count;
digital Write(NANOLED,LOW); // no power
led.setCursor(0,0); // set the cursor at Oth column, Oth row
Lcd Clear Line();
led.setCursor(0,0);
led.print(F("PwrGlitch"));
led.setCursor(11,0);
lcd.print(failuremode); // show how it failed
led.setCursor(0,1); // set the cursor at Oth column, Oth row
Lcd Clear Line();
led.setCursor(0,1);
lcd.print(lockoutcounter);

led.setCursor(8,1);
led.print(F("HVAC OFF"));
wdt_reset();
} // end of ELSE
+ // END OF while
} // eLSE
// If we get here, power was good and OK to turn it back on,
// Which will occur on the next LOOP
} // END OF LOOP

11T [supporting subroutines //////11111111111111T111111111117777

s

T ICLEAR LINE/00000nniinnninn i
void Led Clear Line()

{
led.print(F(" ")); // should be exactly 16 spaces

h
M PRINT TO THE SCREEN /7771111111010
void lcd display(char *s1,char *s2, int dtime)
{
// dtime= milliseconds to delay
led.setCursor(0,0); // set the cursor at Oth column, Oth row
// make sure the strings are null terminated after the 16th character. 1st char = *s1
*(s1+15)=0;
*(s2+15)=0;
led.print(s1);
led.setCursor(0,1); // set cursor to Oth column, 1st row (2nd line on ours)
led.print(s2);
// call the delay function, while handling the watchdog
wdt reset(); // Reset the watchdog timer -- it it doesn't get reset within 2 seconds,
// it will restart the software
MyDelay(dtime);
wdt reset(); // Reset the watchdog timer -- it it doesn't get reset within 2 seconds,
// it will restart the software
h
nnnnnnniIMICROSECOND DELAY NON BLOCKING /1111171777711
void MyMicroSecondsDelay(int udelay)
{
int microseconds;
unsigned long current_microseconds, next microseconds;

current_microseconds = micros();

next microseconds = current_microseconds + (unsigned long) udelay;
while(micros()<next_microseconds);

return;

}

11111IMILLISECOND DELAY NON BLOCKING/////11111111111111
void MyDelay(int msec)

{

unsigned long local current milliseconds, next milliseconds, intermediate_milliseconds;
int x;

int thousands;

wdt_reset();

local current_milliseconds = millis();
next milliseconds = local current milliseconds + (unsigned long) msec;
thousands = msec/1000; // integer division
if(thousands>=1) {
for(x=1;x<= thousands; x++){
intermediate_milliseconds = local current milliseconds + (unsigned long) (x*1000);
while (millis() < intermediate _milliseconds);
wdt reset();
}
h
// now finish out the remainder, which should be less than 1000 milliseconds
while (millis()<next milliseconds);
wdt_reset();
return;

